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The Compression Function

Most well known constructions use (single call) blockcipher based
compression functions
E.g. SHA-1, MD5, Whirlpool, Tiger ...
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The Compression Function

Most well known constructions use (single call) blockcipher based
compression functions
E.g. PGV Compression Functions, SHA-1, MD5, Tiger ...
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The Compression Function

Most well known constructions use (single call) blockcipher based
compression functions.
When the blockcipher is instantiated by AES
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It takes 264 operations to find a collision (due to birthday attack).
Considered to be insufficient!
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Compression Functions

Multi-length blockcipher based compression functions:
Based on small blockciphers running (in general) in parallel,
outputs more than n bits (s > n).
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The Approach of Knudsen-Preneel

1 Let the output size and the number of blockcipher calls vary in
order to guarantee a particular security target (say s ′ ≤ s bits).
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The Approach of Knudsen-Preneel

1 Let the output size and the number of blockcipher calls vary in
order to guarantee a particular security target (say s ′ ≤ s bits).

2 When iterated, one could compress the final state to a desired
length for the security target.
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Knudsen-Preneel Compression Functions
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Knudsen-Preneel Compression Functions
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Knudsen-Preneel Compression Functions
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Knudsen-Preneel Compression Functions
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CPRE is based on a generator matrix of an [r , k , d ] error-correcting
code over F2c .
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Knudsen-Preneel Compression Functions
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(x1, ..., xr ) = CPRE (W )

CPRE is based on a generator matrix of an [r , k , d ] error-correcting
code over F2bc (where bn′ = n).
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An Example:KP[5, 3, 3]4

Given W = (W1||W2||W3||W4||W5||W6), Wi ∈ {0, 1}n
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Knudsen-Preneel Compression Functions

Security Claims:

Collision Resistance
Any collision attack needs at least 2(d−1)n/2 time.
Intuition : The minimum number of small compression functions
for which the simultaneous collisions need to be found.
Update by Watanabe : An attack of time complexity 2n.

Preimage Resistance

Conjecture: Any preimage attack requires at least 2(d−1)n time.
Update: Today’s talk!
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Our Contribution

New Security Analysis of KP Constructions
1 A precise formalization of the KP transform and, more

generally, blockwise-linear schemes.

2 A security proof for preimage resistance of the KP compression
functions in the information-theoretic model.

3 New preimage attacks going well below the conjectured lower
bound by Knudsen and Preneel!

With minimum number of queries.
Optimal time complexity for 9 out of 16 schemes.
Better time complexity than the one given by KP in every case
but two where we get the same complexity.
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Security notion

Definition (Everywhere preimage resistance)
Let c , r , s, t > 0 be integer parameters, and fix a blocksize n > 0.
Let H : {0, 1}tn → {0, 1}sn be a PuRF-based compression function
taking r oracles f1, . . . , fr ∈ F(cn, n). The everywhere
preimage-finding advantage of adversary A is defined to be

Advepre
H (A) = max

Z∈{0,1}sn

{
Pr
[
f1...fr

$←− F(cn, n), (Z ′)← Af1...fr (Z ) :

Z = H f1...fr (Z ′)
]}

Define Advepre
H (q) and Advepre

H (t) as the maximum advantage over
all adversaries making at most q queries to each of their oracles
respectively running in time at most t.
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Information Theoretic Security Proof
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Let H = KPb[r , k , d ]e . Then asymptoticallly for n (with b|n) and
q ≤ g(n)

(2n

e

)r/k with g(n) = o(1), Advepre
H (q) = o(1) .

So, Ω(2rn/k) queries are necessary to win the epre experiment.

It also serves as the best case time complexity!
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The Picture so far

Code Query KP-Conjec. KP-Attack
Low. Bound Low. Bound Time

[r , k , d ]2e 2rn/k 2(d−1)n

[5, 3, 3]4 25n/3 22n 22n

[8, 5, 3]4 28n/5 22n 23n

[12, 9, 3]4 24n/3 22n 23n

[9, 5, 4]4 29n/5 23n 24n

[16, 12, 4]4 24n/3 23n 24n

[6, 4, 3]16 23n/2 22n 22n

[8, 6, 3]16 24n/3 22n 22n

[12, 10, 3]16 26n/5 22n 22n

[9, 6, 4]16 23n/2 23n 23n

[16, 13, 4]16 216n/13 23n 23n

(fi : {0, 1}2n → {0, 1}n)
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The Picture so far

Code Query KP-Conjec. KP-Attack
Low. Bound Low. Bound Time

[r , k , d ]2e 2rn/k 2(d−1)n

[4, 2, 3]8 22n 22n 22n

[6, 4, 3]8 23n/2 22n 22n

[9, 7, 3]8 29n/7 22n 22n

[5, 2, 4]8 25n/2 23n 23n

[7, 4, 4]8 27n/4 23n 23n

[10, 7, 4]8 210n/7 23n 23n

(fi : {0, 1}3n → {0, 1}n)
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[5, 3, 3]4 25n/3 22n 22n
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Observation
1 (0a||x)⊕ (0a||y) = (0a||x ⊕ y)

2 x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Query Phase: Takes O(25n/3) time!

Let xi = (x1
i ||x2

i ). Ask x1
i , x2

i ∈ 0n/6 × {0, 1}5n/6 to each fi .
Keep the lists Li containing partial preimages.
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Merge Phase: (Takes O(n24n/3) time!) Construct

L̃{1,2} = {((x1, x2), x1 ⊕ x2)|(x1, x2) ∈ L1 × L2},
L̃{3,4} = {((x3, x4), x3 ⊕ x4)|(x3, x4) ∈ L3 × L4}
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Join Phase: (Takes O(n24n/3) time!)
Keep all solutions of x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 in
L{1,2,3,4} = {(x1, x2, x3, x4) ∈ L1 × . . .× L4|x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0}
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A Warm-up Example of our Attack on KP[5, 3, 3]4

Finalization: Takes O(n2n) time!
Check L5 membership!
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Overall Comparison

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[5, 3, 3]4 25n/3 25n/3 22n 22n
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The Core Observations

1 The Relation x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0 is defined by a dual
codeword: h = (11110)4.

2 The complexity of Merge and Join Phases are directly related
with the Hamming weight of h.
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Extending Our Attack to all MDS-Schemes

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[5, 3, 3]4 25n/3 25n/3 22n 22n

[8, 5, 3]4 28n/5 28n/5 22n 23n

[12, 9, 3]4 24n/3 24n/3 22n 23n

[9, 5, 4]4 29n/5 211n/5 23n 24n

[16, 12, 4]4 24n/3 27n/3 23n 24n

[6, 4, 3]16 23n/2 23n/2 22n 22n

[8, 6, 3]16 24n/3 24n/3 22n 22n

[12, 10, 3]16 26n/5 26n/5 22n 22n

[9, 6, 4]16 23n/2 22n 23n 23n

[16, 13, 4]16 216n/13 22n 23n 23n

(fi : {0, 1}2n → {0, 1}n)
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Extending Our Attack to all MDS-Schemes (Cont.)

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[4, 2, 3]8 22n 22n 22n 22n

[6, 4, 3]8 23n/2 23n/2 22n 22n

[9, 7, 3]8 29n/7 29n/7 22n 22n

[5, 2, 4]8 25n/2 23n 23n 23n

[7, 4, 4]8 27n/4 29n/4 23n 23n

[10, 7, 4]8 210n/7 22n 23n 23n

(fi : {0, 1}3n → {0, 1}n)
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Extending Our Attack to Non-MDS-Schemes

Since d⊥ < k + 1 for non-MDS codes, we can no longer
reconstruct a unique W after the first Merge-Join phase.
We require one more Merge and Join Phases using another
dual codeword.

Choice of code
Our attacks against the four non-MDS codes were based on
the generator matrix given by Magma.
Non-equivalent codes may perform differently under our attack
(they might not have the same d⊥)
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Overall Results

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[5, 3, 3]4 25n/3 25n/3 22n 22n

[8, 5, 3]4 28n/5 28n/5 22n 23n

[12, 9, 3]4 24n/3 24n/3 22n 23n
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Overall Results

Code Query Our Attack KP-Conjec. KP-Attack
Low. Bound Time Low. Bound Time

[r , k, d ]2e 2rn/k 2(d−1)n

[4, 2, 3]8 22n 22n 22n 22n

[6, 4, 3]8 23n/2 23n/2 22n 22n

[9, 7, 3]8 29n/7 29n/7 22n 22n

[5, 2, 4]8 25n/2 23n 23n 23n

[7, 4, 4]8 27n/4 29n/4 23n 23n

[10, 7, 4]8 210n/7 22n 23n 23n

(fi : {0, 1}3n → {0, 1}n)
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Conclusion

We presented a new preimage attack whose time complexity is
well below (nearly for all cases) the conjectured lower bound
given by Knudsen and Preneel.
We determined a lower bound on the query complexity to
successfully find preimages.
Based on our security proof, the query complexity of our new
attack is essentially optimal (up to a small factor).
For 9 out of the 16 schemes, our new preimage-finding attack
is optimal.
For the remaining seven schemes we leave a gap between the
information-theoretic lower bound and the real-life upper
bound.

Upcoming Work: Similar Analysis for the Collision Resistance!
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(THANK YOU!)
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