Attacking the Knudsen-Preneel Compression Functions

Onur Özen¹ and Thomas Shrimpton² and Martijn Stam¹

¹Ecole Polytechnique Fédérale de Lausanne

²Portland State University

Fast Software Encryption, 2010

Outline

Introduction

- Information-Theoretic Considerations
- Our Preimage Attacks on KP-Constructions

④ Conclusion

The Compression Function

Most well known constructions use (single call) blockcipher based compression functions

E.g. SHA-1, MD5, Whirlpool, Tiger ...

 $E: \{0,1\}^n \times \{0,1\}^k \longrightarrow \{0,1\}^n$

The Compression Function

Most well known constructions use (single call) blockcipher based compression functions

E.g. PGV Compression Functions, SHA-1, MD5, Tiger ...

 $E: \{0,1\}^n \times \{0,1\}^k \longrightarrow \{0,1\}^n$

The Compression Function

Most well known constructions use (single call) blockcipher based compression functions.

When the blockcipher is instantiated by AES

It takes 2⁶⁴ operations to find a collision (due to birthday attack). Considered to be insufficient!

Compression Functions

Multi-length blockcipher based compression functions: Based on small blockciphers running (in general) in parallel, outputs more than n bits (s > n).

E.g. MDC-2, MDC-4, Abreast-DM, Tandem-DM, KP ...

The Approach of Knudsen-Preneel

■ Let the output size and the number of blockcipher calls vary in order to guarantee a particular security target (say s' ≤ s bits).

The Approach of Knudsen-Preneel

- **1** Let the output size and the number of blockcipher calls vary in order to guarantee a particular security target (say $s' \le s$ bits).
- When iterated, one could compress the final state to a desired length for the security target.

Knudsen-Preneel Compression Functions

Knudsen-Preneel Compression Functions

Knudsen-Preneel Compression Functions

Knudsen-Preneel Compression Functions

$$(x_1,...,x_r)=C^{PRE}(W)$$

 C^{PRE} is based on a generator matrix of an [r, k, d] error-correcting code over \mathbb{F}_{2^c} .

Knudsen-Preneel Compression Functions

$$(x_1,...,x_r)=C^{PRE}(W)$$

 C^{PRE} is based on a generator matrix of an [r, k, d] error-correcting code over $\mathbb{F}_{2^{bc}}$ (where bn' = n).

Given $W = (W_1 || W_2 || W_3 || W_4 || W_5 || W_6)$, $W_i \in \{0, 1\}^n$ $(W_1 \parallel W_2) = x_1 - f_1$ $\downarrow^n \rightarrow y$ $(W_3 \parallel W_4) = x_2 - f_2$ $\xrightarrow{n} y_{a}$ $(W_{5} \parallel W_{6}) = x_{3} - f_{3}$ $\xrightarrow{n} y_{1}$ $(W_1 \oplus W_3 \oplus W_5 \parallel W_2 \oplus W_4 \oplus W_6) = x_4 - t^{2n} f_4$ $\xrightarrow{n} y$ $(W_1 \oplus W_3 \oplus W_5 \oplus W_6 || W_2 \oplus W_3 \oplus W_4 \oplus W_6) = x_5 \xrightarrow{-1^{2n}} f_5 \xrightarrow{n} y_5$

An Example:*KP*[5,3,3]₄

Knudsen-Preneel Compression Functions

Security Claims:

Collision Resistance

Any collision attack needs at least $2^{(d-1)n/2}$ time. **Intuition :** The minimum number of small compression functions for which the simultaneous collisions need to be found. **Update by Watanabe :** An attack of time complexity 2^n .

Knudsen-Preneel Compression Functions

Security Claims:

Collision Resistance

Any collision attack needs at least $2^{(d-1)n/2}$ time. **Intuition** : The minimum number of small compression functions for which the simultaneous collisions need to be found. **Update by Watanabe** : An attack of time complexity 2^n .

Preimage Resistance

Conjecture: Any preimage attack requires at least $2^{(d-1)n}$ time. **Update:** Today's talk!

Our Contribution

New Security Analysis of KP Constructions

A precise formalization of the KP transform and, more generally, blockwise-linear schemes.

Our Contribution

New Security Analysis of KP Constructions

- A precise formalization of the KP transform and, more generally, blockwise-linear schemes.
- ② A security proof for preimage resistance of the KP compression functions in the information-theoretic model.

Our Contribution

New Security Analysis of KP Constructions

- A precise formalization of the KP transform and, more generally, blockwise-linear schemes.
- ② A security proof for preimage resistance of the KP compression functions in the information-theoretic model.
- 3 New preimage attacks going well *below* the conjectured lower bound by Knudsen and Preneel!
 - With minimum number of queries.
 - Optimal time complexity for 9 out of 16 schemes.
 - Better time complexity than the one given by KP in every case but two where we get the same complexity.

Outline

- Introduction
- Information-Theoretic Considerations
- Our Preimage Attacks on KP-Constructions
- Conclusion

Security notion

Definition (Everywhere preimage resistance)

Let c, r, s, t > 0 be integer parameters, and fix a blocksize n > 0. Let $H : \{0, 1\}^{tn} \to \{0, 1\}^{sn}$ be a PuRF-based compression function taking r oracles $f_1, \ldots, f_r \in \mathcal{F}(cn, n)$. The everywhere preimage-finding advantage of adversary \mathcal{A} is defined to be

$$\mathsf{Adv}_{H}^{\mathsf{epre}}(\mathcal{A}) = \max_{Z \in \{0,1\}^{sn}} \left\{ \mathsf{Pr}\left[f_{1} ... f_{r} \xleftarrow{\$} \mathcal{F}(cn,n), (Z') \leftarrow \mathcal{A}^{f_{1} ... f_{r}}(Z) : Z = H^{f_{1} ... f_{r}}(Z') \right] \right\}$$

Define $\operatorname{Adv}_{H}^{\operatorname{epre}}(q)$ and $\operatorname{Adv}_{H}^{\operatorname{epre}}(t)$ as the maximum advantage over all adversaries making at most q queries to each of their oracles respectively running in time at most t.

Information Theoretic Security Proof

Corollary

Let $H = KP^{b}[r, k, d]_{e}$. Then asymptotically for n (with b|n) and $q \leq g(n) \left(\frac{2^{n}}{e}\right)^{r/k}$ with g(n) = o(1), $Adv_{H}^{epre}(q) = o(1)$.

So, $\Omega(2^{rn/k})$ queries are necessary to win the epre experiment.

Information Theoretic Security Proof

Corollary

Let $H = KP^{b}[r, k, d]_{e}$. Then asymptotically for n (with b|n) and $q \leq g(n) \left(\frac{2^{n}}{e}\right)^{r/k}$ with g(n) = o(1), $Adv_{H}^{epre}(q) = o(1)$.

So, $\Omega(2^{rn/k})$ queries are necessary to win the epre experiment. It also serves as the best case time complexity!

The Picture so far

Code	Query	KP-Conjec.	KP-Attack	
	Low. Bound	Low. Bound	Time	
$[r, k, d]_{2^{e}}$	$2^{rn/k}$	$2^{(d-1)n}$		
[5, 3, 3] ₄	$2^{5n/3}$	2^{2n}	2^{2n}	
$[8, 5, 3]_4$	2 ^{8n/5}	2^{2n}	2 ³ <i>n</i>	
$[12, 9, 3]_4$	$2^{4n/3}$	2^{2n}	2 ³ <i>n</i>	
$[9, 5, 4]_4$	2 ^{9n/5}	2 ³ⁿ	2 ⁴ ⁿ	
$[16, 12, 4]_4$	2 ^{4n/3}	2 ³ <i>n</i>	2 ⁴ ⁿ	
$[6, 4, 3]_{16}$	$2^{3n/2}$	2^{2n}	2^{2n}	
$[8, 6, 3]_{16}$	$2^{4n/3}$	2^{2n}	2^{2n}	
$[12, 10, 3]_{16}$	2 ^{6n/5}	2^{2n}	2 ²ⁿ	
$[9, 6, 4]_{16}$	$2^{3n/2}$	2 ³ <i>n</i>	2 ³ <i>n</i>	
$[16, 13, 4]_{16}$	$2^{16n/13}$	2 ³ⁿ	2 ³ⁿ	
$(f_i:\{0,1\}^{2n}\rightarrow \{0,1\}^n)$				

The Picture so far

Code	Query	KP-Conjec.	KP-Attack	
	Low. Bound	Low. Bound	Time	
$[r, k, d]_{2^e}$	$2^{rn/k}$	$2^{(d-1)n}$		
[4, 2, 3] ₈	2 ²ⁿ	2 ²	2 ²ⁿ	
[6, 4, 3] ₈	$2^{3n/2}$	2 ²ⁿ	2 ²ⁿ	
$[9, 7, 3]_8$	2 ^{9n/7}	2^{2n}	2 ²ⁿ	
$[5, 2, 4]_8$	$2^{5n/2}$	2 ³ⁿ	2 ³ⁿ	
[7, 4, 4] ₈	$2^{7n/4}$	2 ³ⁿ	2 ³ⁿ	
$[10, 7, 4]_8$	$2^{10n/7}$	2 ³ⁿ	2 ³ⁿ	
$(f_i: \{0,1\}^{3n} \to \{0,1\}^n)$				

Outline

- Introduction
- Information-Theoretic Considerations
- Our Preimage Attacks on KP-Constructions
- Conclusion

A Warm-up Example of our Attack on $KP[5, 3, 3]_4$

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^{e}}$	$2^{rn/k}$		$2^{(d-1)n}$	
$[5, 3, 3]_4$	$2^{5n/3}$		2^{2n}	2 ²ⁿ

$$(W_{i} \parallel W_{2}) = x_{i} \xrightarrow{2n} f_{i} \xrightarrow{n} y_{i}$$

$$(W_{3} \parallel W_{4}) = x_{2} \xrightarrow{2n} f_{2} \xrightarrow{n} y_{2}$$

$$(W_{3} \parallel W_{4}) = x_{3} \xrightarrow{2n} f_{3} \xrightarrow{n} y_{2}$$

$$(W_{5} \parallel W_{6}) = x_{3} \xrightarrow{2n} f_{3} \xrightarrow{n} y_{3}$$

$$(W_{1} \oplus W_{3} \oplus W_{5} \parallel W_{2} \oplus W_{4} \oplus W_{6}) = x_{4} \xrightarrow{2n} f_{4} \xrightarrow{n} y_{4}$$

$$(W_{1} \oplus W_{3} \oplus W_{5} \oplus W_{6} \parallel W_{2} \oplus W_{3} \oplus W_{4} \oplus W_{6}) = x_{5} \xrightarrow{2n} f_{5} \xrightarrow{n} y_{5}$$

A Warm-up Example of our Attack on $KP[5, 3, 3]_4$

Observation

1
$$(0^{a}||x) \oplus (0^{a}||y) = (0^{a}||x \oplus y)$$

$$2 x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$$

$$(W_{1} \parallel W_{2}) = x_{1} \xrightarrow{2n} f_{1} \xrightarrow{n} y_{1}$$

$$(W_{3} \parallel W_{4}) = x_{2} \xrightarrow{2n} f_{2} \xrightarrow{n} y_{2}$$

$$(W_{3} \parallel W_{4}) = x_{3} \xrightarrow{-2n} f_{3} \xrightarrow{n} y_{2}$$

$$(W_{5} \parallel W_{6}) = x_{3} \xrightarrow{-2n} f_{3} \xrightarrow{n} y_{3}$$

$$(W_{1} \oplus W_{3} \oplus W_{5} \parallel W_{2} \oplus W_{4} \oplus W_{6}) = x_{4} \xrightarrow{-2n} f_{4} \xrightarrow{n} y_{4}$$

$$W_{1} \oplus W_{3} \oplus W_{5} \oplus W_{6} \parallel W_{2} \oplus W_{3} \oplus W_{4} \oplus W_{6}) = x_{5} \xrightarrow{-2n} f_{5} \xrightarrow{n} y_{5}$$

A Warm-up Example of our Attack on $KP[5,3,3]_4$

Query Phase: Takes $\mathcal{O}(2^{5n/3})$ time!

- Let $x_i = (x_i^1 || x_i^2)$. Ask $x_i^1, x_i^2 \in 0^{n/6} \times \{0, 1\}^{5n/6}$ to each f_i .
- Keep the lists L_i containing partial preimages.

A Warm-up Example of our Attack on $KP[5,3,3]_4$

Merge Phase: (Takes
$$\mathcal{O}(n2^{4n/3})$$
 time!) Construct
 $\tilde{L}_{\{1,2\}} = \{((x_1, x_2), x_1 \oplus x_2) | (x_1, x_2) \in L_1 \times L_2\},$
 $\tilde{L}_{\{3,4\}} = \{((x_3, x_4), x_3 \oplus x_4) | (x_3, x_4) \in L_3 \times L_4\}$

A Warm-up Example of our Attack on $KP[5,3,3]_4$

Join Phase: (Takes $\mathcal{O}(n2^{4n/3})$ time!) Keep all solutions of $x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0$ in $\mathcal{L}_{\{1,2,3,4\}} = \{(x_1, x_2, x_3, x_4) \in \mathcal{L}_1 \times \ldots \times \mathcal{L}_4 | x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0\}$

A Warm-up Example of our Attack on $KP[5, 3, 3]_4$

Finalization: Takes $\mathcal{O}(n2^n)$ time!

• Check L₅ membership!

Overall Comparison

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^e}$	2 ^{rn/k}		$2^{(d-1)n}$	
[5, 3, 3] ₄	$2^{5n/3}$	$2^{5n/3}$	2^{2n}	2^{2n}

The Core Observations

- In The Relation x₁ ⊕ x₂ ⊕ x₃ ⊕ x₄ = 0 is defined by a dual codeword: h = (11110)₄.
- 2 The complexity of Merge and Join Phases are directly related with the Hamming weight of *h*.

Extending Our Attack to all MDS-Schemes

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^{e}}$	$2^{rn/k}$		$2^{(d-1)n}$	
$[5, 3, 3]_4$	$2^{5n/3}$	$2^{5n/3}$	2 ²ⁿ	2 ²ⁿ
[8, 5, 3] ₄	$2^{8n/5}$	2 ^{8n/5}	2 ²ⁿ	2 ³ⁿ
$[12, 9, 3]_4$	$2^{4n/3}$	$2^{4n/3}$	2 ²ⁿ	2 ³ⁿ
$[9, 5, 4]_4$	2 ^{9n/5}	$2^{11n/5}$	2 ³ⁿ	2 ⁴
$[16, 12, 4]_4$	$2^{4n/3}$	2 ^{7n/3}	2 ³ⁿ	2 ⁴
$[6, 4, 3]_{16}$	2 ^{3n/2}	2 ^{3n/2}	2 ²ⁿ	2 ²ⁿ
[8, 6, 3] ₁₆	$2^{4n/3}$	$2^{4n/3}$	2 ²ⁿ	2 ²ⁿ
$[12, 10, 3]_{16}$	2 ^{6n/5}	2 ^{6n/5}	2 ²ⁿ	2 ²ⁿ
$[9, 6, 4]_{16}$	$2^{3n/2}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ
$[16, 13, 4]_{16}$	$2^{16n/13}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ

 $(f_i: \{0,1\}^{2n} \to \{0,1\}^n)$

Extending Our Attack to all MDS-Schemes (Cont.)

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^{e}}$	$2^{rn/k}$		$2^{(d-1)n}$	
[4, 2, 3] ₈	2 ²ⁿ	2 ²ⁿ	2 ²ⁿ	2 ²ⁿ
[6, 4, 3] ₈	$2^{3n/2}$	$2^{3n/2}$	2 ²ⁿ	2 ²ⁿ
[9,7,3] ₈	2 ^{9n/7}	2 ^{9n/7}	2 ²ⁿ	2 ²ⁿ
[5, 2, 4] ₈	$2^{5n/2}$	2 ³ⁿ	2 ³ⁿ	2 ³ⁿ
$[7, 4, 4]_8$	$2^{7n/4}$	2 ^{9n/4}	2 ³ⁿ	2 ³ⁿ
$[10, 7, 4]_8$	$2^{10n/7}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ

 $(f_i: \{0,1\}^{3n} \to \{0,1\}^n)$

Extending Our Attack to Non-MDS-Schemes

- Since d[⊥] < k + 1 for non-MDS codes, we can no longer reconstruct a unique W after the first Merge-Join phase.
- We require one more Merge and Join Phases using another dual codeword.

Choice of code

- Our attacks against the four non-MDS codes were based on the generator matrix given by Magma.
- Non-equivalent codes may perform differently under our attack (they might not have the same d^{\perp})

Overall Results

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^e}$	$2^{rn/k}$		$2^{(d-1)n}$	
[5, 3, 3] ₄	2 ^{5n/3}	2 ^{5n/3}	2 ²ⁿ	2 ²ⁿ
$[8, 5, 3]_4$	$2^{8n/5}$	$2^{8n/5}$	2^{2n}	2 ³ⁿ
$[12, 9, 3]_4$	$2^{4n/3}$	$2^{4n/3}$	2^{2n}	2 ³ⁿ
$[9, 5, 4]_4$	2 ^{9n/5}	$2^{11n/5}$	2 ³ⁿ	2 ⁴ n
$[16, 12, 4]_4$	$2^{4n/3}$	$2^{7n/3}$	2 ³ⁿ	2 ⁴ n
[6, 4, 3] ₁₆	2 ^{3n/2}	$2^{3n/2}$	2 ²ⁿ	2 ²ⁿ
[8, 6, 3] ₁₆	$2^{4n/3}$	$2^{4n/3}$	2 ²ⁿ	2 ²ⁿ
$[12, 10, 3]_{16}$	2 ^{6n/5}	2 ^{6n/5}	2 ²ⁿ	2 ²ⁿ
$[9, 6, 4]_{16}$	$2^{3n/2}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ
$[16, 13, 4]_{16}$	$2^{16n/13}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ

 $\left(f_i:\{0,1\}^{2n}\to\{0,1\}^n\right)$

Overall Results

Code	Query	Our Attack	KP-Conjec.	KP-Attack
	Low. Bound	Time	Low. Bound	Time
$[r, k, d]_{2^e}$	$2^{rn/k}$		$2^{(d-1)n}$	
[4, 2, 3] ₈	2^{2n}	2^{2n}	2 ²ⁿ	2^{2n}
[6, 4, 3] ₈	$2^{3n/2}$	$2^{3n/2}$	2 ²ⁿ	2 ²ⁿ
[9,7,3] ₈	2 ^{9n/7}	2 ^{9n/7}	2 ²ⁿ	2 ²ⁿ
[5, 2, 4] ₈	$2^{5n/2}$	2 ³ⁿ	2 ³ⁿ	2 ³ⁿ
$[7, 4, 4]_8$	2 ^{7n/4}	2 ^{9n/4}	2 ³ⁿ	2 ³ⁿ
$[10, 7, 4]_8$	$2^{10n/7}$	2 ²ⁿ	2 ³ⁿ	2 ³ⁿ

 $(f_i: \{0,1\}^{3n} \to \{0,1\}^n)$

Outline

- Introduction
- Information-Theoretic Considerations
- Our Preimage Attacks on KP-Constructions
- ④ Conclusion

- We presented a new preimage attack whose time complexity is well below (nearly for all cases) the conjectured lower bound given by Knudsen and Preneel.
- We determined a lower bound on the query complexity to successfully find preimages.
- Based on our security proof, the query complexity of our new attack is essentially optimal (up to a small factor).
- For 9 out of the 16 schemes, our new preimage-finding attack is optimal.
- For the remaining seven schemes we leave a gap between the information-theoretic lower bound and the real-life upper bound.

Upcoming Work: Similar Analysis for the Collision Resistance!

감사합니다 (THANK YOU!)